

REFORMED CHURCH UNIVERSITY

FACULTY OF EDUCATION AND SOCIAL SCIENCES

BACHELOR OF SCIENCE HONOURS DEGREE IN INFORMATION TECHNOLOGY

Mathematics for Computing

HICT 108

Part 1 Semester 2 Examination

Total Marks [100]

Date: July 2022

Time: 3 Hours

INSTRUCTIONS

- 1. This paper has six (6) questions
- 2. Answer any *four (4)* questions
- 3. Each question carries 25 marks
- 4. Start each question on a new page

Question 1

(a) Translate the following statements:

(i) 'Jack and Jill went up the hill 'into symbolic form using	
conjunction (4)	
(ii) 'The crop will be destroyed if there is a flood' into symbolic	
form using conditional connective. (4))
(b) Let p and q denote the statements:	
p: You drive over 70 km per hour.	
q: You get a speeding ticket.	
Write the following statements into symbolic forms.	
(i) You will get a speeding ticket if you drive over 70 km per hour.	
(3	3)
(ii) Driving over 70 km per hour is sufficient for getting a speeding	5
ticket. (3))
(iii) If you do not drive over 70 km per hour then you will not get a	ì
speeding ticket. (3))
(iv) Whenever you get a speeding ticket, you drive over 70 km per	
hour. (3	3)
(c) Construct the truth table for $(p \to q) \land (q \to p)$ (5))

Question 2

Prove (a)	$P \lor Q \Leftrightarrow \neg (\neg P \land \neg Q).$	(1	5)
(b)	$(\mathbf{P} \to \mathbf{Q}) \Leftrightarrow (\neg \mathbf{P} \lor \mathbf{Q}).$	(1	0)

Question 3

(a) Let $A = \{1, 2, 3, 4\}$ and $B = \{b1, b2, b3\}$. Consider the relation $R = \{(1, 2, 3, 4)\}$
<i>b</i> 2), (1, <i>b</i> 3), (3, <i>b</i> 2), (4, <i>b</i> 1), (4, <i>b</i> 3)}. Determine the matrix of the relation.
(12)

(b) Let $X = \{1, 2, 3, 4\}$ and $R = \{(x, y) | x > y\}$. Draw the graph of R and also give its matrix. (13)

Question 4

- (a) Let S = {a, b, c} and consider the following collections of subsets of S.
 A = { {a, b}, {b, c} }, B = { {a}, {b, c} }, C = { {a, b, c} }, D = { {a}, {b}, {c} }, C = { {a, b, c} }, D = { {a}, {b}, {c} }, C = { {a}, {b}, {c} }, D = { {a}, {b}, {c} }, C = { {a}, {b}, {c} }, D = { {a}, {b}, {c} }, C = { {a}, {b}, {c} }, D = { {a}, {b}, {c} }, C = { {a}, {b}, {c} }, D = { {a}, {b}, {c} }, C = { {a}, {b}, {c} }, D = { {a}, {b}, {c} }, C = { {a}, {b}, {c} }, D = { {a}, {b}, {c} }, C = { {a}, {b}, {c} }, D = { {a}, {b}, {c} }, C = { {a}, {b}, {c} }, D = { {a}, {b}, {c} }, C = { {a}, {b}, {c} }, D = { {a}, {b}, {c} }, C = { {a}, {b}, {c} }, D = { {a}, {b}, {c} }, C = { {a}, {b}, {c} }, D = { {a}, {b}, {c} }, C = { {a}, {c} }, C = { {b}, {c} }, C = { {a}, {c}
- (b) Let $X = \{1, 2, 3, 4\}$ and $R == \{(1, 1), (1, 4), (4, 1), (4, 4), (2, 2), (2, 3), (3, 2), (3, 3)\}.$

Prove that R is an equivalence relation. (13)

(c) If the function *f* is defined by *f*(x)=x2 + 1 on the set {-2, -1, 0, 1, 2}, find the range of *f*.

Question 5

- (a) Determine whether f: Z → Z given by f(x) = x², x ∈ Z is a one-to-One function. (5)
- (b) Show that a mapping $f: R \to R$ defined by f(x) = 2x + 1 for $x \in R$ is a bijective map from *R* to *R*. (6)
- (c) Let $X = \{1, 2, 3\}$ and f, g, h and s be the functions from X to X given by $f = \{(1, 2), (2, 3), (3, 1)\}$ $g = \{(1, 2), (2, 1), (3, 3)\}$ $h = \{(1, 1), (2, 2), (3, 1)\}$ $s = \{(1, 1), (2, 2), (3, 3)\}$ Find
 - (i) $f \circ f$; (2)
 - (ii) $g \circ f$; (2)
 - (iii) $f \circ h \circ g$; (2)
 - (iv) $s \circ g$; (2)
 - (v) $g \circ s;$ (2)
 - (vi) $s \circ s$; (2)

(vii)
$$f \circ s$$
. (2)

Question 6

Prove that

(i) the sum of two odd integers is an even integer. (1)	2)
---	----

(ii) a group consisting of three elements is an abelian group? (13)